6.3 Amplitude Solution to Equation of Motion

The solution to the equation of motion is found to be in the form:

$$
\begin{equation*}
u(t)=A \cos \omega t+B \sin \omega t \tag{6.1}
\end{equation*}
$$

However, we regularly wish to express it in one of the following forms:

$$
\begin{align*}
& u(t)=C \cos (\omega t+\alpha) \tag{6.2}\\
& u(t)=C \cos (\omega t-\beta) \tag{6.3}
\end{align*}
$$

Where

$$
\begin{gather*}
C=\sqrt{A^{2}+B^{2}} \tag{6.4}\\
\tan \alpha=\frac{A}{B} \tag{6.5}\\
\tan \beta=\frac{B}{A} \tag{6.6}
\end{gather*}
$$

To arrive at this result, re-write equation (6.1) as:

$$
\begin{equation*}
u(t)=C\left[\frac{A}{C} \cos \omega t+\frac{B}{C} \sin \omega t\right] \tag{6.7}
\end{equation*}
$$

If we consider that A, B and C represent a right-angled triangle with angles α and β, then we can draw the following:

Thus:

$$
\begin{align*}
& \sin \alpha=\cos \beta=\frac{A}{C} \tag{6.8}\\
& \cos \alpha=\sin \beta=\frac{B}{C} \tag{6.9}
\end{align*}
$$

Introducing these into equation (6.7) gives two relationships:

$$
\begin{align*}
& u(t)=C[\sin \alpha \cos \omega t+\cos \alpha \sin \omega t] \tag{6.10}\\
& u(t)=C[\cos \beta \cos \omega t+\sin \beta \sin \omega t] \tag{6.11}
\end{align*}
$$

And using the well-known trigonometric identities:

$$
\begin{align*}
& \sin (X+Y)=\sin X \cos Y+\cos X \sin Y \tag{6.12}\\
& \cos (X-Y)=\cos X \cos Y+\sin X \sin Y \tag{6.13}
\end{align*}
$$

Gives the two possible representations, the last of which is the one we adopt:

$$
\begin{align*}
& u(t)=C \sin (\omega t+\alpha) \tag{6.14}\\
& u(t)=C \cos (\omega t-\beta) \tag{6.15}
\end{align*}
$$

